Modern VAE models

PixelRNN

CAR DOES NO

2 MBN

TO LEARN DEEP LEARNING

- Unsupervised learning: learn how to model p(x)
- Decompose the marginal

$$p(x) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

- Assume row-wise pixel by pixel generation and sequential colors $R \rightarrow G \rightarrow B$
 - Each color conditioned on all colors from previous pixels and specific colors in the same pixel

$$p(x_{i,R}|x_{< i}) \cdot p(x_{i,G}|x_{< i}, x_{i,R}) \cdot p(x_{i,B}|x_{< i}, x_{i,R}, x_{i,G})$$

Final output is 256-way softmax

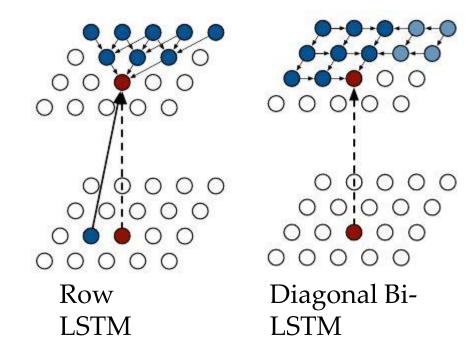
Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016

PixelRNN

Our How to model the conditionals?

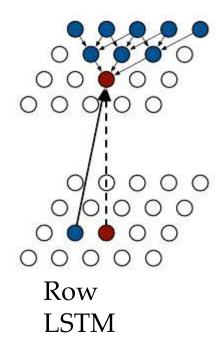
$$p(x_{i,R}|x_{< i}), p(x_{i,G}|x_{< i}, x_{i,R}), p(x_{i,B}|x_{< i}, x_{i,R}, x_{i,G})$$

- LSTM variants
 - 12 layers
- Row LSTM
- Diagonal Bi-LSTM



PixelRNN - RowLSTM

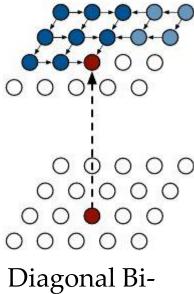
- Hidden state (i, j) =
 Hidden state (i-1, j-1) +
 Hidden state (i-1, j) +
 Hidden state (i-1, j+1) +
 p(i, j)
- By recursion the hidden state captures a fairly triangular region



PixelRNN – Diagonal BiLSTM

- How to capture the whole previous context
- Pixel (i, j) = Pixel (i, j-1) + Pixel (i-1, j)

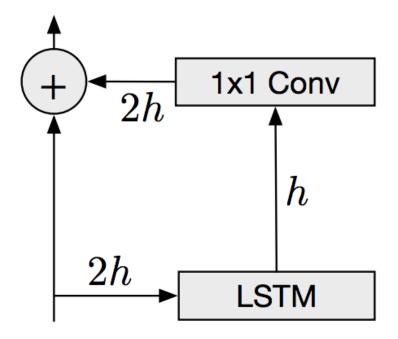
- Processing goes on diagonally
- Receptive layer encompasses entire region



LSTM

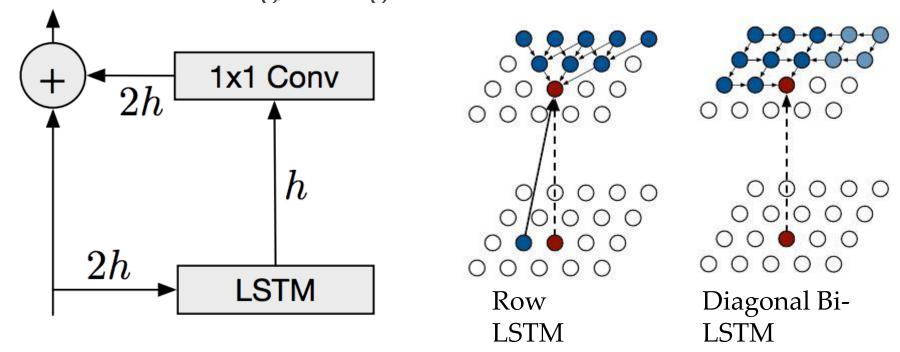
PixelRNN – Residual connections

- Propagate signal faster
- Speed up convergence



PixelRNN – Pros & Cons

- Pros: good modelling of $p(x) \rightarrow$ nice image generation
- Half pro: Residual connections speeds up convergence
- Cons: still slow training, slow generation



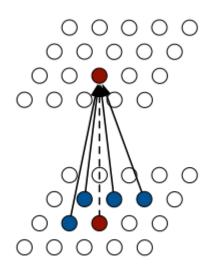
PixelRNN - Generations

Figure 1. Image completions sampled from a PixelRNN.

PixelCNN

Unfortunately, PixelRNN is too slow

- Solution: replace recurrent connections with convolutions
 - Multiple convolutional layers to preserve spatial resolution
- Training is much faster because all true pixels are known in advance, so we can parallelize
 - Generation still sequential (pixels must be generated) → still slow



PixelCNN

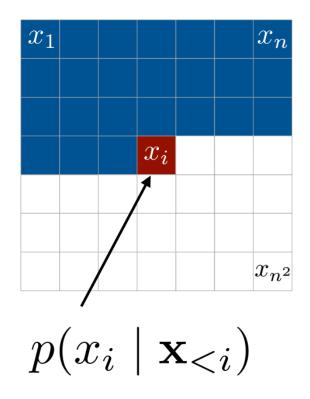
Stack of masked convolutions

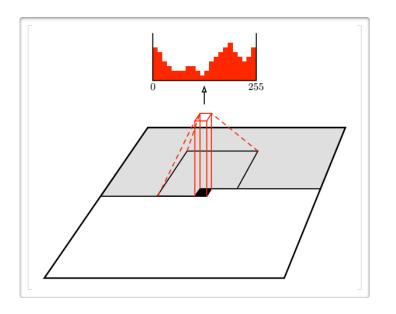
COTTY OTA CTOTES				
1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016

PixelCNN

Use masked convolutions again to enforce autoregressive relationships





PixelCNN – Pros and Cons

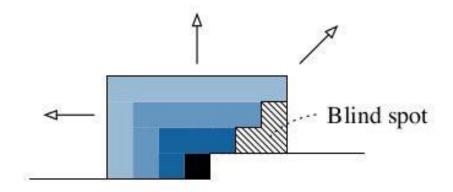
- Cons: Performance is worse than PixelRNN
- o Why?

PixelCNN – Pros and Cons

- Cons: Performance is worse than PixelRNN
- o Why?
- Not all past context is taken into account
- New problem: the cascaded convolutions create a "blind spot"

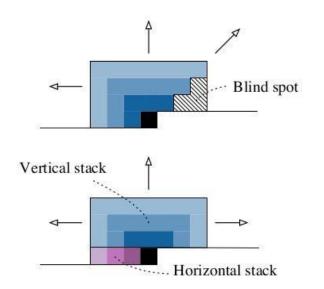
Blind spot

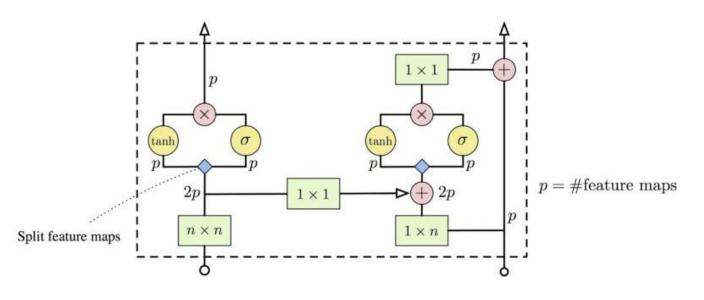
- Because of
 - (a) the limited receptive field of convolutions and
 - (b) computing all features at once (not sequentially)
 - → cascading convolutions makes current pixel not depend on <u>all</u> previous
 - → blind spot



Fixing the blind spot: Gated PixelCNN

- Use two layers of convolutions stacks
 - Horizontal stack: conditions on current row and takes as input the previous layer output and the vertical stack
 - Vertical stack: conditions on all rows above current pixels
- Also replace ReLU with a $tanh(W * x) \cdot \sigma(U * x)$





PixelCNN - Generations

Coral reef

PixelCNN - Generation

Sorrel horse

PixelCNN - Generation

Sandbar

PixelCNN - Generation

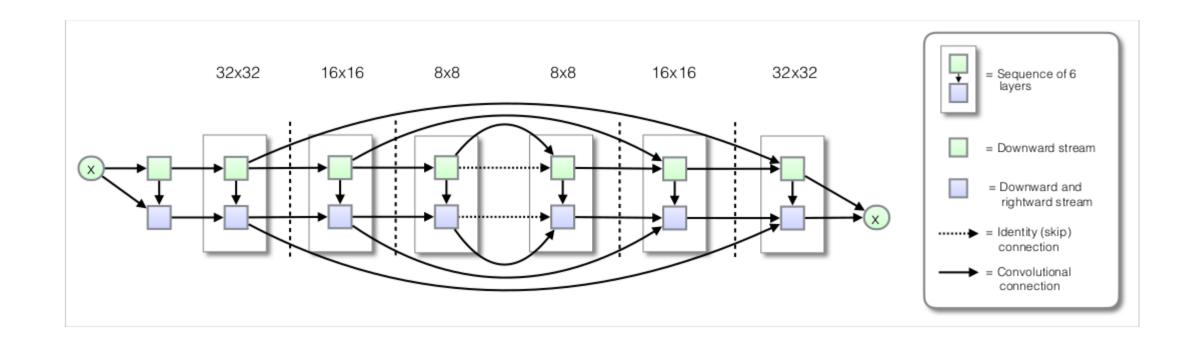
Lhasa Apso

PixelCNN++

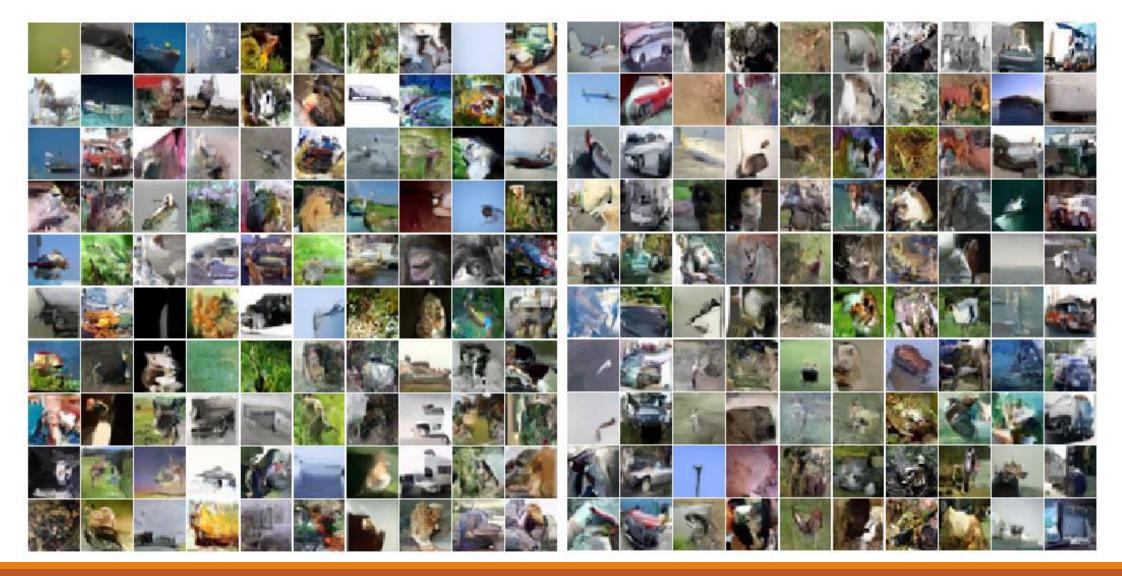
- Improving the PixelCNN model
- Replace the softmax output with a discretized logistic mixture lihelihood
 - Softmax is too memory consuming and gives sparse gradients
 - Instead, assume logistic distribution of intensity and round off to 8-bits
- Condition on whole pixels, not pixel colors
- Downsample with stride-2 convs to compute long-range dependencies
- Use shortcut connections
- Dropout
 - PixelCNN is too powerful a framework → can onverfit easily

PixelCNN++: Improving the PixelCNN with Discretized Logistic, Salimans, Karpathy, Chen, Kingma,

PixelCNN++



PixelCNN++ - Generations



Advantages/Disadvantages

SoTA density estimation

- Quite slow because of autoregressive nature
 - They must sample sequentially
- They do not have a latest space

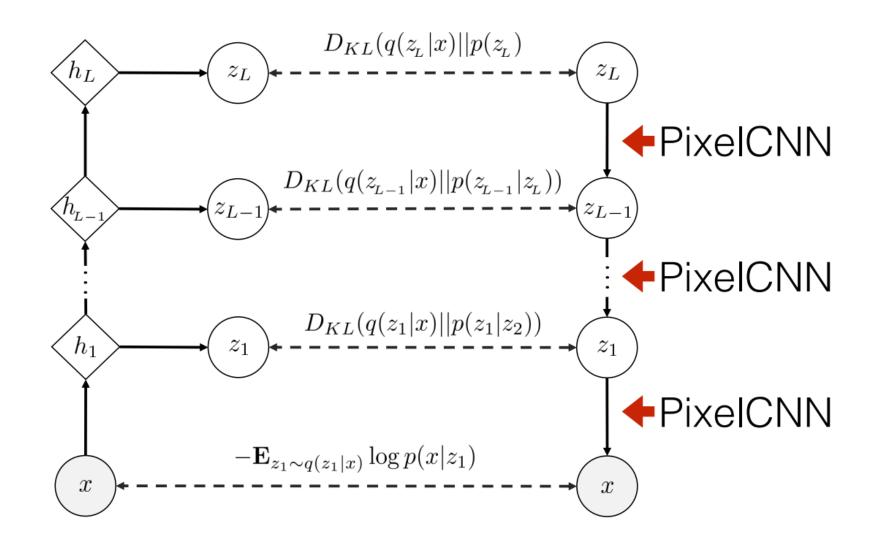
PixelVAE

A standard VAE with a PixelCNN generator/decoder

 OBE careful. Often the generator is so powerful, that the encoder/inference network is ignored ← Whatever the latent code z there will be a nice image generated

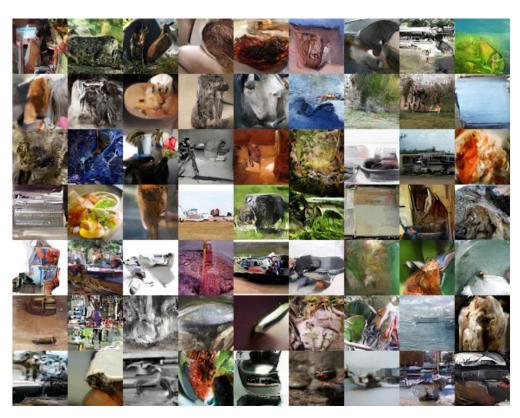
PixelVAE: A Latent Variable Model for Natural Images, Gulrajani et al., ICLR 2017

PixelVAE



PixelVAE - Generations

64x64 LSUN Bedrooms



64x64 ImageNet

PixelVAE - Generations

Varying top latents

Varying bottom latents

Varying pixel-level noise

