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o Unsupervised learning: learn how to model 𝑝(𝑥)

o Decompose the marginal

𝑝 𝑥 =ෑ

𝑖=1

𝑛2

𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

o Assume row-wise pixel by pixel generation and sequential colors R→G→B
◦ Each color conditioned on all colors from previous pixels and specific colors in the 

same pixel

𝑝 𝑥𝑖,𝑅|𝑥<𝑖 ⋅ 𝑝 𝑥𝑖,𝐺|𝑥<𝑖 , 𝑥𝑖,𝑅 ⋅ 𝑝 𝑥𝑖,𝐵|𝑥<𝑖 , 𝑥𝑖,𝑅 , 𝑥𝑖,𝐺

o Final output is 256-way softmax

PixelRNN

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016
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o How to model the conditionals?

𝑝 𝑥𝑖,𝑅|𝑥<𝑖 , 𝑝 𝑥𝑖,𝐺|𝑥<𝑖 , 𝑥𝑖,𝑅 , 𝑝 𝑥𝑖,𝐵|𝑥<𝑖 , 𝑥𝑖,𝑅 , 𝑥𝑖,𝐺

o LSTM variants
◦ 12 layers 

o Row LSTM

o Diagonal Bi-LSTM

PixelRNN

Row 
LSTM

Diagonal Bi-
LSTM
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o Hidden state (i, j) = 
Hidden state (i-1, j-1) + 
Hidden state (i-1, j) +
Hidden state (i-1, j+1) +
p(i, j)

o By recursion the hidden state
captures a fairly triangular region

PixelRNN - RowLSTM

Row 
LSTM
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o How to capture the whole previous context

o Pixel (i, j) = 
Pixel (i, j-1) + 
Pixel (i-1, j)

o Processing goes on diagonally

o Receptive layer encompasses entire region

PixelRNN – Diagonal BiLSTM

Diagonal Bi-
LSTM



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 6

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 6 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 6 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 6 VISLab

o Propagate signal faster

o Speed up convergence

PixelRNN – Residual connections
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o Pros: good modelling of 𝑝(𝑥)→ nice image generation

o Half pro: Residual connections speeds up convergence

o Cons: still slow training, slow generation

PixelRNN – Pros & Cons

Row 
LSTM

Diagonal Bi-
LSTM
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PixelRNN - Generations
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o Unfortunately, PixelRNN is too slow

o Solution: replace recurrent connections with convolutions
◦ Multiple convolutional layers to preserve spatial resolution

o Training is much faster because all true pixels are known in 
advance, so we can parallelize
◦ Generation still sequential (pixels must be generated) →

still slow

PixelCNN

Stack of masked 
convolutions

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016
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o Use masked convolutions again to enforce autoregressive relationships

PixelCNN
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o Cons: Performance is worse than PixelRNN

o Why?

PixelCNN – Pros and Cons



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 12

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 12 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 12 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 12 VISLab

o Cons: Performance is worse than PixelRNN

o Why?

o Not all past context is taken into account

o New problem: the cascaded convolutions create a “blind spot”

PixelCNN – Pros and Cons
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o Because of
(a) the limited receptive field of convolutions and
(b) computing all features at once (not sequentially)
→ cascading convolutions makes current pixel not depend on all previous
→ blind spot

Blind spot
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o Use two layers of convolutions stacks
◦ Horizontal stack: conditions on current row and takes as input the 

previous layer output and the vertical stack

◦ Vertical stack: conditions on all rows above current pixels

o Also replace ReLU with a tanh(𝑊 ∗ 𝑥)⋅ 𝜎(𝑈 ∗ 𝑥)

Fixing the blind spot: Gated PixelCNN
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o Coral reef

PixelCNN - Generations
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o Sorrel horse

PixelCNN - Generation
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o Sandbar

PixelCNN - Generation
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o Lhasa Apso

PixelCNN - Generation
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o Improving the PixelCNN model

o Replace the softmax output with a discretized logistic mixture lihelihood
◦ Softmax is too memory consuming and gives sparse gradients

◦ Instead, assume logistic distribution of intensity and round off to 8-bits

o Condition on whole pixels, not pixel colors

o Downsample with stride-2 convs to compute long-range dependencies

o Use shortcut connections

o Dropout
◦ PixelCNN is too powerful a framework → can onverfit easily

PixelCNN++

PixelCNN++: Improving the PixelCNN with Discretized Logistic, Salimans, Karpathy, Chen, Kingma, 
ICLR 2017
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PixelCNN++
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PixelCNN++ - Generations
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o SoTA density estimation

o Quite slow because of autoregressive nature
◦ They must sample sequentially

o They do not have a latest space

Advantages/Disadvantages
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o A standard VAE with a PixelCNN generator/decoder

o Be careful. Often the generator is so powerful, that the encoder/inference 
network is ignored Whatever the latent code 𝑧 there will be a nice image 
generated

PixelVAE

PixelVAE: A Latent Variable Model for Natural Images, Gulrajani et al., ICLR 2017
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PixelVAE
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PixelVAE - Generations

64x64 LSUN 
Bedrooms

64x64 ImageNet
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PixelVAE - Generations

Varying pixel-level 
noise

Varying bottom 
latents

Varying top latents


