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o Assume row-wise pixel by pixel generation and sequential colors R>G—>B

> Each color conditioned on all colors from previous pixels and specific colors in tl
same pixel

p(xirlx<) - (xiglx<i xir) - P(xi51X<is Xi R0 Xi )

o Final output is 256-way softmax

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu, arXiv 2016
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PixelRNN

o How to model the conditionals?

p(xirlx<i) P(xiclx<i xi ), D(Xi Bl X<t X1 gy Xi )

o LSTM variants
12 layers
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Diagonal Bi-
LSTM

o Row LSTM
o Diagonal Bi-LSTM
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PixelRNN - RowLSTM

o Hidden state (i, j) =
Hidden state (i-1, j-1) +
Hidden state (i-1, j) +
Hidden state (i-1, j+1) +
p(, j)
o By recursion the hidden state
captures a fairly triangular region
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PixelRNN — Diagonal BiLSTM

o How to capture the whole previous context

o Pixel (i, j) = pefo!ﬁ

Pixel (i, j-1) + o o oto
Pixel (i-1, j) !
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: : OCO®0O0
o Processing goes on diagonally 00000

o Receptive layer encompasses entire region %ﬁ‘g\iﬂal Bi-
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PixelRNN — Residual connections

o Propagate signal faster

o Speed up convergence

<+—— 1x1 Conv

2h A

2h
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PixelRNN — Pros & Cons

o Pros: good modelling of p(x) = nice image generation
o Half pro: Residual connections speeds up convergence

o Cons: still slow training, slow generation

<+— 1x1 Conv

2h A
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Diagonal Bi-
LSTM

2h

> LSTM
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PixelRNN - Generations

occluded completions original

:

Figure 1. Image completions sampled from a PixeIRNN.
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PiXQlCNN O000O0
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o Unfortunately, PixelRNN is too slow :
®| QO O
O /@ O
o Solution: replace recurrent connections with convolutions a0 o‘oooo
> Multiple convolutional layers to preserve spatial resolution BicelCNN
IXe
o . . Stack of masked
o Training is much faster because all true pixels are known in convolutions
advance, so we can parallelize 111|111
- Generation still sequential (pixels must be generated) = 11111
still slow 11

Pixel Recurrent Neural Networks, van den Oord, Kalchbrenner and Kavukcuoglu,
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Pixel CNN

o Use masked convolutions again to enforce autoregressive relationships
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PixelCNN - Pros and Cons

o Cons: Performance is worse than PixelRNN

o Why?
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PixelCNN - Pros and Cons

o Cons: Performance is worse than PixelRNN
o Why?
o Not all past context is taken into account

o New problem: the cascaded convolutions create a “blind spot”
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Blind spot

o Because of

(a) the limited receptive field of convolutions and
(b) computing all features at once (not sequentially)

—> cascading convolutions makes current pixel not depend on all previous
- blind spot

/

.--- Blind spot
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Fixing the blind spot: Gated Pixel CNN

o Use two layers of convolutions stacks

- Horizontal stack: conditions on current row and takes as input the
previous layer output and the vertical stack

> Vertical stack: conditions on all rows above current pixels

o Also replace ReLU with a tanh(W * x)- a(U * x)
|, S G
SN

N\ Blind spot

p = F#feature maps

1x1
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Split feature maps
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PixelCNN - Generations

o Coral reef
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PixelCNN - Generation

o Sorrel horse

lgl UNIVERSITY OF AMSTERDAM EFSTRATIOS GAVVES - UVA DEEP LEARNING COURSE - 17 VISLab



PixelCNN - Generation

o Sandbar
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PixelCNN - Generation

o Lhasa Apso
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Pixel CNN++

o Improving the Pixel CNN model

o Replace the softmax output with a discretized logistic mixture lihelihood
° Softmax is too memory consuming and gives sparse gradients
> Instead, assume logistic distribution of intensity and round off to 8-bits

o Condition on whole pixels, not pixel colors
o Downsample with stride-2 convs to compute long-range dependencies
o Use shortcut connections

o Dropout
> PixelCNN is too powerful a framework = can onvertfit easily

Pixel CNN++: Improving the PixelCNN with Discretized Logistic, Salimans, Karpathy, Chen, Kingma,
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Pixel CNN++

= Sequence of 6
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Pixel CNN++ - Generations
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Advantages/Disadvantages

o SoTA density estimation

o Quite slow because of autoregressive nature
> They must sample sequentially

o They do not have a latest space
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PixelVAE

o A standard VAE with a PixelCNN generator/decoder

o Be careful. Often the generator is so powerful, that the encoder/inference
network is ignored € Whatever the latent code z there will be a nice image
generated

PixelVAE: A Latent Variable Model for Natural Images, Gulrajani et al., ICLR 2017
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PixelVAE
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PixelVAE - Generations
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PixelVAE - Generations
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